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ABSTRACT

Continuous slowing-down theory is generalized so that in-

elastic scattering can be taken into account accurately.

The basic idea underlying generalized theory is the assump-

tion that the ratio R(u), of the solution spectrum to a reference

spectrum, g(u), varies linearly with the lethargy, u; that is,

R(u) can be approximated by two terms of a Taylor's series as

long as g(u) is chosen reasonably. Such conventional theories

as Geortzel-Greuling (GG) or Stacey's Improved-GG (I-GG) are in-

cluded in this theory by taking g(u) as l/	 (u) or lgt(u),

respectively.

The present theory is demonstrated to yield quite accurate

results for the neutron spectra and coarse-group effective

cross sections in many varieties of core and blanket composi-

tions of fast reactors, using three alternative prescriptions

for g(u).
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I. INTRODUCTION

Much work has been done on the application of the continuous slowing-

down (CSD) theory to fast-reactor spectrum calculations. The basic ideas

of CSD theory were worked out
1-4

 many years ago by Fermi, Wigner, Goertzel

and Greuling (GG), Hurwitz and Zweifel, Amster, and others. Their methods

depended upon the assumption that the isotopic scattering collision density

E .$(u) was constant (Fermi, Wigner) or linearly varying (GG) within a
sj

scatteringinterval,whereE.and (1)(u) are the scattering cross section
sj

of isotope j and the neutron spectrum, respectively.

However, it is clear that the above approximation will fail in situa-

tions where the inherent assumption is invalid. One difficulty occurs in

the treatment of sharp resonances in a mixture of several moderating mate-

rials. When a resonance in one isotope is narrow relative to the scatter-

iogiotervalai.ofotherisotopesjinthemixture,thez.(04)(u) is no
sj

loogerlinearoverthescatteringintervalai..Another difficulty

encountered in the above approximation is in the treatment of inelastic

events, since the lethargy increase in inelastic scattering is so large

that the linear expansion of the scattering collision density is a poor

approximation.

In order to overcome the first difficulty, Stacey
5
 has proposed the

Improved Goertzel-Greuling (I-GG) approximation for the treatment of

elastic moderation of neutrons, and successfully demonstrated its usefulness

for spectrum calculation in fast-reactor compositions. To derive the I-GG

equations Stacey expands the total collision density, instead of the scat-

tering density, in a Taylor series. His approach still requires, however,





that inelastic scattering be treated by multigroup methods, since a linear

expansion of the collision density is still inadequate over the large

lethargy intervals involved in inelastic scattering events.

On the other hand, efforts have been made by many authors to modify

CSD theory to include inelastic events and to apply their CSD theory to

fast-reactor spectrum calculations. Among them, Segev
6
 applied Taylor's

expansion to the inelastic scattering source integral to arrive at an ana-

log of the GO approximation for elastic scattering. The spectrum obtained

by use of Segev's model does not agree well with multigroup (MG) results,

probably because he retains only two terms in the series expansion of

the isotopic collision density.

Dunn and Becker
7
 avoided the Taylor's expansion by the introduction

of a moderating parameter, c(u), adjusted to give the correct solution in

the case of zero absorption. Using this method they compute spectra in

good agreement with MG spectra. However, in the Dunn and Becker method,

the treatment of y(U), one of the two GG parameters, is somewhat arbitrary.

Therefore, from a theoretical point of view, it is not clear that their

definition of y(U) will be generally satisfactory, in spite of the good

results which Dunn and Becker obtained in their tests.

Yamamoto and Ito
8
 introduced an improvement by using Taylor's expan-

sion of an approximate slowing-down density, (u)c(u)(u), instead of

the collision density. In the theory, fission source is replaced by fic-

titious inelastic scattering from a monoenergetic source in order to main-

tain the slowing-down density nearly constant even in the fission source

range. In the Yamamoto and Ito method .r,(u) is computed by solving multi-

group equations very similar to the MG slowing-down equations. Therefore,

3





4

it seems reasonable to expect that computing time for the Yamamoto and Ito

method will be comparable to conventional MG computing times.

Rocca-Volmerange
9
 has also attacked this problem, extending the idea

of Cadlihac and Pujol l ° to represent the scattering kernel P as a sum of

separable kernels. The author introduced the generalized scattering sources

ly(u,w) defined as

U

t14,0	
Jr

=EdirEsplgir 11P.(u- 4 u + w)

and the slowing-down densities q m defined as the m-th moment in w of

tp(u,w). Parameters which relate the (u,0) and the q(u) are determined by

use of a set of N reference spectra. The relation thus obtained, and an

N-th order differential equation for q(u) (arising from neutron balance),

are coupled and solved for the particular problem. Calculations performed

for fast-reactor compositions give fairly good results using three or four

reference spectra. At this time it is not yet possible to come to any con-

clusion as to the advantages and disadvantages of the Rocca-Volmerange

method,
9
 as compared with the method proposed here.

Lately Yamamura and Sekiya 	 (u) so that the differential

equation for q reduces to a Wigner-type slowing-down equation, without mak-

ing any Taylor's expansions. In the application of their method to actual

systems, they compute (u) iteratively, starting from the ordinary moderat-

ing parameter of the original Wigner approximation. Their spectra agree

very well with MG spectra at the third iteration on (u). However,

Yamamura and Sekiya do not define microscopic moderating parameters based

on this method. The unavailability of such parameters reduces the advan-

tage of their CSD theory relative to MG approximation methods.





In the present paper, the author has generalized GG and I-GG theories

so that inelastic events can be taken into account accurately by using a

Taylor's expansion of the ratio of the solution spectrum to a reference

spectrum, g(u). The ratio will be slowly varying over the slowing-down

interval as long as a reasonable g(u) is chosen. The applicability of the

present method is examined through several demonstrations for many varie-

ties of fast-reactor compositions, and consideration is given to the

utilization of a microscopic moderating paramter library obtained, by the

present method, in a reference composition. In the final part of the

paper, the coarse-group effective cross sections (for groups of lethargy

width equal to one) are compared with MG results in order to assess the

accuracy of the proposed method.

II. FORMULATION

The fundamental equation for neutron balance in an infinite homo-

geneous medium with isotropic scattering is

pu)+Ea()J1)(0--Eidu'E s .(u1,1)(ulf i (u-,u) + S(u) , (1),1

where the neutron source term S(u) is

5

. .(1) Jr du- y E	 (u-Wul
f,i

+ s
external (u) ,

—

and A. stands for the maximum lethargy increase by inelastic and elastic

scatterings in isotope i. The summation is over all isotopes present,

and the scattering cross section s,i
(u) is
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.(u)	 .(u) 4- E..	 ,s,1	 e,1	 1n,1

while f i (u',u) is the scattering energy transfer kernel of isotope i:

f.(u',u)	 =	
1
	 E	 (u)f	 U)

1
E	 e'l	

e,1
5,1

+ E.	 .0.11f.	 U)	 .111,1	 in,1

The neutron leakage from a system can be taken into account by adding

B 2 i3E (u) to the macroscopic absorption cross section. The subscripts
g	 tr

a, f, e, in, and tr refer to absorption, fission, elastic, and inelastic

scattering and transport, respectively, and B 2 stands for the buckling.

The slowing-down density is defined as

q(u)--Eidu'rE.(u(u)f i (u' u") du" . (3)
u-Ai

Using the identity

x—•
dq(u) _ z s (u)(p(u) - Lei'	 du' E(ulgulf i (u"	 u) .	 (4)
du	 -Ai

Equation (1) can be written

dq(u)	 S(u) - E a (u)cp(u) •
du

(2)

(5)

Up to this point no approximations have been made relative to Eq. (1),

and Eqs. (3) and (5) are equally difficult to solve.	 In order to solve





z t ( 1J- 4(V )	 Et(u)(u) + (u- _ u) 4_
du

—
E t u )(P u	 • (7)

Eqs. (3) and (5), conventional GG theory utilizes the feature that the

isotopic scattering collision density is a smooth function of lethargy,

and makes the Taylor's expansion

E s,i (u)cp(u) + (u- - u)	 ,(u)(1)(u)] ,	 (6)
du	 ',I

while Stacey's I-GG theory utilizes the feature that the total collision

density is a smoother function of lethargy, and makes the Taylor's

expansion

7

The validity of such approximations depends upon the composition, and on

the lethargy range in question.

Since the total collision density is a more slowly varying quantity

than each of the isotopic scattering collision densities, Stacey has suc-

ceeded in showing that the I-GG approximation yields significantly better

results than the GG approximation in the vicinity of several iron reso-

nances for a typical fast-breeder reactor composition. However, the

lethargy increase in inelastic scattering is so large that neither of the

above approximations is valid for the inelastic events.

In order to overcome this difficulty, the author proposes a new

Taylor's expansion of a more slowly varying quantity, a ratio R(u) of the

solution neutron spectrum (1)(u), to the reference spectrum g(u), i.e.

R(u-) 17-, ap(u)i g (u-)1j 	= E(u - u)ndn R(u) .	 (8)
n=o	 n!	 dun





K(u)	 - -1— ji du
n!-

du-- a(u)g(u)fi ( ir 	 u--)(u- - u) n , (10)

u'+4.

Jr	 1U-A

As long as the g(u) is chosen reasonably, the function R(u) can be slowly

varying over the slowing-down interval not only in the lower energy range

but also in the intermediate and higher energy ranges, where inelastic

events are important and where the GG and I-GG approximations have failed.

We can derive a Generalized Goertzel-Greuling (G-GG) theory by the

same procedure as was applied in the I-GG theory.

Using Eq. (8) in Eq. (3), we find that

CO

q(u) = E - N. E	 dnR(.) 
n=0 1	 dun

where K(u) is defined as

8

(9)

and N. 	 the atomic number density of isotope i of the mixture. Differen-

tiation of Eq. (9) yields

dq(u) _ _ E E
du	 i	 n=0

Neglecting second and higher derivative terms and combining Eqs. (9) and (11),

we get

,n+1 dKn(u) dnR(u)
Kn (u) u R(u) + 1 .	 (11)

dun+I du dun

dK9(u—.)
q(U)	 y(U) -2119- LL	 EN. . K°(u)	 Y(U)

du	 i	
1	 I.	 du

R(u) ,	 (12)





where y(u) is defined as

9

y(u)	 _E N.0(u)1 1	 1
dIMu)

K° (u) + 1
du

By introducing the following composite moderating parameters

E i ( u ) 12 I -10i(U)/g(U)

dK?(u)

a.1 (u) -K1(u)/g(u)

dK1.(u)
C.(u) 121 = 1 g(u)	 , el(u) K°(u)	 +	 1-

du du

we get the GG-type equation:

19(u) , (13)

q(u)	 „((u) dq(u) _	 Z(u)du)	 (14)
du

where the basic moderating parameters &, a, c, and e are defined as sums

of isotopic moderating parameters. Thus du) I 12 N.yU),

a(u) I	 N,ai(u), etc.	 Further

(u) = E( u )	 y(u) • C(u)

and

	

	 (15)

y(u) = a(u)/e(u) .

When Eq. (5) is used to eliminate the flux (p(u) in Eq. (14), and

the resulting equation is integrated directly, we obtain





E	 E	 .0-0ei
1
	 a.1 	1/ai

1 - ai

(19)
a. Io n 1/a i l 2

y_(U)	 L(U) _E	 AU) • 1	
2 • 11-ai t

o
e
(u) .

I-u
q(u) = exp - ii du' Ea

(u)

o	

u	 .
q(0) + ji du

M(u)	
- dul 

o	 Wu')

• S(u-) exp	 du" Ea(u--) 

Jru

	
M(u)

	 (16)

where

M(u)	 = Z(u) +y(u)E a (u) .	 ( 17)

The flux and slowing-down density are related by

(I)( u )	 =	 [ q (u) + y(u)S(u)]/M(u)	 (18)

The microscopic moderating parameters E i , a i , c i , and e i defined in

Eq. (13) consist of averages over the slowing-down intervals of the indi-

vidual isotopes of the mixtures, averages with weights G i g(u) and

When g(u) is taken as 1/E(u) over the slowing-down interval, the

present approximation for the elastic scattering reduces to the I-GG

approximation.
5
 When g(u) is redefined to depend upon i and taken as

1/0
e,i

(u) over the slowing-down interval, the elastic moderating parame-

ters E e and y e reduce identically to those of the GG approximation
2
 except

for the absence of the factor 1/E e in the definition of e(u):

1 0





in
	 = EE	 (E)Q '

i Ai

Y in ( E ) = lEE E.	 (E)Q2 /EE z.	 (E)Q ( 20)2	 4	 A	 'in,?. 	 A.	 A.1	 i Ai

and

Further we find (still taking g(u) = 1/G(u)) that Ce (u) = O.

Moreover, in the treatment of inelastic scattering, when g i (E) is

taken as 1/o .  A (E) and a Taylor's expansion such as Eq. (8) is performed
'

in energy, the moderating parameters in (E) and y in (E) for the inelastic

discrete model reduce to those of Segev's
6
 approximation, i.e.

1 1

C. (E)	 =	 0 .
in

Here Q A and E in A are, respectively, the excitation energy and the
'

inelastic cross section of the A-th level of the nuclide i, andz in (E) is

equal to 1.7	 E in A. (E).

III. NUMERICAL TESTS AND DISCUSSION

A.	 Computational Procedures and Test Problems 

Some numerical calculations have been performed with a lethargy inter-

val of 1/120 to demonstrate the validity of the present theory for an in-

finite iron medium and typical fast reactor compositions, whose parameters

are given in Table I. The problems CO and BL in Table I have, respectively,

core and blanket compositions typical of a fast-breeder reactor, and the

problem REF has the average number densities of CO and BL with equal weight.

Parameters for a core highly enriched in plutonium, designated HIE-CO, are

among those listed in Table I. This core has been included in the present
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study in order to illustrate the performance of the method for a wide

range of reactor parameters.

All the nuclear data in our compositions were processed from ENDF/B-III
(13)

using the ET0E-2
(14)

 code but, for the sake of simplicity, some were sub-

sequently modified. One modification was in the treatment of the uranium

and plutonium absorption cross sections below the unresolved resonance ener-

gies. The uranium cross section was changed to a 1/v cross section with a

2200 mps value of 500 b. The plutonium cross section was represented by a

1/v cross section with a 2200 mps value of 900 b superimposed on a constant

cross section of 2.5 b. The validity of treating the narrow resonances of

heavy isotopes separately from the basic slowing-down calculation has been

demonstrated by Stacey.
5
 Another modification was made in the inelastic

reaction data. Since the aim of this paper is simply to demonstrate the

method presented here, inelastic reactions were treated by discrete and

simple evaporation models, and limited to (n,n') reaction. 	 Inelastic and

elastic scatterings were assumed to be isotropic in the center of mass

system.

The comparison MG calculations were made with the MC 2 -2 (15) code, in

which the same nuclear data as in the CSD theory calculations were used.

Henceforth, the CSD theory presented here is referred as the G-GG theory.

Because the present method is based on the assumption that the R(u) is

slowly varying, one must choose a reasonable g(u) or Fg(u)[= g(u) • Etr(u)1

before carrying out the spectrum calculation. The following three types of

Fg(u) were chosen tentatively:

Option 1: Fg(u) =	 x(u) du .

Option 2: Fg(u) taken from the reference system.
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Option 3: Fg(u) calculated from Eqs. (16) and (18) by use of a micro-

scopic moderating parameter library. The library parameters

are computed in a reference system, using the G-GG theory.

When one has no information on the fine-group spectrum flu), it is

necessary to start from Option 1. Since the first solution by the G-GG

method may not be sufficiently accurate, we have to iterate once or twice

on Fg(u). The convergence being rapid, as will be discussed later, we can

get accurate solutions on the second iteration. When some information on

moderating parameters or on cp(u) is available for a reference system,

Option 2 or 3 can be applied. The accuracy of the solution depends on how

the reference composition differs from the compositions in the particular

problem that we want to solve. Below we show, through several demonstra-

tions, that solutions obtained by use of Option 2 or 3, with a reference sys-

tem designated as "REF" in Table I, agree quite well with MG results for

many varieties of core and blanket compositions. In the latter part of

this section it is also shown that the g(u) itself, computed via Option 3,

agrees well with MG results.

B.	 Calculational Results and Discussion 

Figure 1 demonstrates the convergence of Option 1 of the proposed

method. Since the convergence of the iterative process is very rapid,

the chaindotted line which corresponds to the collision density at the

second iteration lies on the solid line representing the MG collision

density. The collision density at the third iteration is not shown in

the figure, because it merges with the MG result. The local difference

which was observed in a narrow energy range at the second iteration has

disappeared by the third iteration.
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In Fig. 2 the calculated moderating parameters &, E in , and y are

compared for the I-GG
(16)

 and G-GG (Option 3) theories in the CO composi-

tion, and the resulting spectra are shown in Figs. 3 and 4. Specifically,

the Option 3 computation proceeds as follows: First, moderating parame-

ters appropriate to the "REF" composition are taken from a parameter

library and inserted into Eqs. (16) and (18). The function cp(u) is then

put into Eq. (13) (in place of g(u)) and the moderating parameters are

recomputed. The recalculated parameters are then reinserted into Eqs. (16)

and (18), and cl)(u) is recomputed. The corresponding MG result is also

shown in Figs. 3 and 4.

As we would expect, large differences are observed between the c's

of both methods in higher energy ranges in Fig. 2. The 	 and in in the

G-GG theory show fluctuations as functions of energy, fluctuations which

are due to the fluctuation of the quantity [1/E5(u)]/g(u). On the other

hand, those moderating parameters in the I-GG theory do not fluctuate because,

in this case, g(u) is set equal to 1/c(u). The agreement between the

G-GG and MG spectra is fairly good over the whole energy range: in con-

trast the I-GG approximation fails in the high energy range because of the

poor approximation for inelastic scattering.

The applicability of the G-GG theory has been checked for many varie-

ties of fast reactor core and blanket compositions, and similar good agree-

ment with MG result has been observed.

In practice the efficiency of the G-GG method is considerably enhanced

if it is possible to make use of a precomputed parameter library. There-

fore, it is very important to investigate whether spectral calculation can

be performed accurately through use of such a library; that is, to deter-

mine whether the g(u) given by Option 3 agrees well with the MG spectrum.
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Figures 5 and 6 show the calculational results for HIE-CO and BL composi-

tions obtained by use of a single set of microscopic moderating parameters

calculated for one reference composition, designated "REF". The functions

g(u) from Option 3 are in surprisingly good agreement with MG results.

Note that these g(u)'s are obtained by inserting moderating parameters,

from a parameter library, directly into Eqs. (16) through (18). Thus,

in this case the computation of g(u) does not involve the recalculation

of moderating parameters. The good agreement between g(u)'s so obtained,

and MG results, suggests a great advantage of G-GG theory relative to the

MG method, because in the calculation of g(u) by Option 3, a good deal of

nuclear data is preprocessed and need not be treated explicitly. Thus,

for example the Option 3 calculation does not make use, explicitly, of

inelastic cross sections and Q value for each discrete level, or the

nuclear temperatures and cross sections for the statistical model in inelas-

tic events, while the MG calculation does require the processing of such

data.

However, we must be aware that it is necessary to iterate on g(u) in

the application of this theory to a system where the spectrum shape is com-

pletely different from the reference spectrum. For example in an infinite

iron reflector, the absorption of the medium is so small that the (1)(u)

rarely decreases substantially at large u. Therefore, whether one chooses

Option 1, 2, or 3, it is necessary to iterate on g(u). Figure 7 shows the

results at the first and third iterations, for an iron reflector, obtained

by use of Option 3. It will be seen that good agreement with the MG method

can be obtained at the third iteration.

Finally the coarse-group effective microscopic cross sections (t,Fe)
and

 (
0.	 \are compared in Table II for various approximations. Cross
c,Na/





sections listed in the column labelled "g(u)" were obtained as follows.

First, moderating parameters appropriate to the "REF" composition were

inserted into Eqs. (16) and (18). Then the s(u) computed from these equa-

tions were used in the calculation of the group-collapsed cross sections.

The cross sections in the column labelled "G-GG" were computed via

Option 3, and the spectrum shown in Fig. 3 is the final spectrum used in

the group-collapsing process.

Note that the large errors in the columns labelled "I-GO' are due

to the failure of the I-GO approximation in the presence of inelastic

scattering. This sort of behavior is to be expected since the I-GG

approximation was specifically designed to treat elastic scattering and

was never intended for the treatment of inelastic scattering.

SUMMARY

The author has generalized a continuous slowing-down theory so that

inelastic scattering can be taken into account accurately. Tests of the

present theory show quite good agreement in the neutron spectrum and

effective cross sections with multigroup calculations over the whole

energy range. It is thus demonstrated that the present theory can be

used as an attractive alternative to multigroup theory for the calcula-

tions of neutron spectra in fast-reactor compositions.

CSD theory has an evident advantage relative to multigroup theory

because inelastic and elastic matrices are not required for the CSD for-

malism in the slowing-down source calculation. Moreover, it must be

emphasized that the success of the utilization of a microscopic moderating

parameter library gives a great advantage to the CSD theory, since the

16





CSD theory yields an accurate neutron spectrum quickly without the use

of a vast amount of inelastic data.
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(ENDF-201), Brookhaven National Laboratory (1973).

14C. G. STENBERG, "ETOE-2, A Program for Conversion of ENDF/B to

MC2 -2, Applied Physics Division Annual Report, July 1, 1970 to June 30,

1971, ANL-7910, pp. 442-445.

15
H. HENRYSON, II and B. J. TOPPEL, "MC 2 -2: A code to Calculate Fast

Neutron Spectra and Multigroup Cross Sections," ANL-2144, Argonne National

Laboratory, to be published.

The option of the multigroup approximation was applied in the calcu-

lation for the elastic and inelastic events.

15 It is clear that the I-GG method, as originally developed by Stacey,5

was designed for the treatment of elastic scattering in spectrum calculations.

This method is unsuited to the treatment of inelastic scattering and was never

intended for such a purpose. Nevertheless comparisons between the extended

I-GG method and the 0-GO method seem to be of some interest, and the extended

I-GO method was developed specifically to permit such comparisons. Althouah

it may be inappropriate to refer to our extended version of Stacey's method

as "I-GO" theory we will, for the sake of convenience, continue to do so.





TABLE I

Parameters Used in Test Computations

I.D.	 of Problem HIE-CO CO BL REF Fe

Fission spectrum

PUO2/(PUO2 + UO2), %

Volume Fraction, %

Fuel
Fe
Na

Buckling B2	(cm- 2 )
S .

239pu

25

35
24
41

0.0018

239pu

15

238u

0

60
16
24

0.0

239pu

5.7

48
20
32

0.0009

239pu

---

0
100

0

0





TABLE II

Comparison of Effective Cross Sections in the CO composition

D(()) _ 

( G x,i)	 (ax,i,MG)
x 100(%)	 = t or c)a

<ax,i2MG›

Coarse
Group

Lower Energy
(Em 	 10 MeV)

(°t,Fe) D ((at ,Fe)) ' % (ac,Na)
D((ac 2 Na)) , %

MG	 (b) I-GG g(u)b G-GGc MG (mb) I-GG g(u)b G-Ge

1 3.68 MeV 3.635 0.0 0.0 0.0 0.163 0.0 0.0 0.0

2 1.35 3.136 0.1 0.1 0.0 0.190 -0.1 -0.1 0.0

3 498.	 keV 2.600 1.2 0.0 -0.1 0.291 -0.1 0.5 0.3

4 183. 3.020 -6.8 0.1 -0.1 0.588 -2.1 0.2 -0.1

5 67.4 3.521 -20.1 0.2 -0.2 1.053 -11.6 -0.1 0.0

6 24.8 7.163 4.2 -0.4 -0.3 2.374 -4.5 0.1 0.0

7 9.12 2.330 4.0 -0.7 -0.5 0.343 1.1 -0.2 -0.2

8 3.36 9.590 0.3 0.1 0.0 4.834 0.1 -0.6 -0.3

9 1.34 8.050 -0.1 -0.1 0.0 34.23 0.4 0.5 0.5

10 454.	 eV 9.736 -0.1 0.0 0.0 5.482 0.0 0.0 0.0

11 167. 10.93 0.0 0.0 0.0 8.052 0.0 0.0 0.0

12 61.5 11.41 0.0 0.0 0.0 9.292 -0.1 -0.1 -0.1

a (a 
x	

\iMG / is the effective cross section of reaction x in element i using the MG approximation (MC2-2).

 du
(0	 =	 0 i(u),p(u)/

AI 
ducl)(u), where IG is coarse group number and AIG is the coarse-group width.

\ X,1/
IC 	 AIG x '	 G

b
Calculated from Eqs. (16) and (18) by use of a set of microscopic moderating parameters from REF composition.

°Option 3 is applied.
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Fig. 4. The I-GG spectrum compared with the MG result in the CO composition.

(NIL Neg. No. 116-2585)
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